Inner Coastal Plain Fish IBI

John Vile Water Monitoring & Standards Bureau of Freshwater and Biological Monitoring

What is a Fish Index of Biotic Integrity?

- Using fish assemblages to assess the overall health of a stream ecosystem
- A scoring system based on multiple attributes (metrics) of a fish assemblage
- Individual metrics are summed and overall score used to determine health of a water body
- Metrics selected based on how well they indicate anthropogenic stressors

Why Use Fish as Biological Monitors?

- Fish are long-lived and are therefore good indicators of long-term disturbances
- Fish assemblages generally consist of a number of trophic levels
- Fish are at the top of the food chain in aquatic environments and are consumed by humans
- > Fish are easy to collect and identify
- Fish account for nearly half the endangered vertebrates of the U.S.

Validity of the Index of Biotic Integrity Karr et al. 1986

- Criterion 1. The measure must be biological.
- **Criterion 2.** The measure must be interpretable at several trophic levels or provide a connection to other organisms not directly involved in the monitoring.
- **Criterion 3.** The measure must be sensitive to the environmental conditions being monitored.
- **Criterion 4.** The response range of the measure must be suitable for the intended application.
- **Criterion 5.** The measure must be reproducible and precise within defined and acceptable limits for data collected over space and time.
- Criterion 6. Variability of the measure must be low.

Northern Fish IBI

- Northern Fish IBI developed by U.S. EPA Region 2
- > BFBM initiated monitoring in 2000
- > 98 site network consisting of fixed, random, sentinel sites
- > 26-32 sites per year, 5 year rotation
- Index period June through Mid-October
- Currently in 3rd round of monitoring

Southern Fish IBI

- Pilot project to develop a fish IBI started by NJ Fish & Wildlife in 2000
- BFBM initiated redevelopment in 2008
- Scoring criteria and validation finalized spring 2012
- ➤ 43 site network consisting of fixed, random, sentinel sites

North vs. South

Northern Streams

- > High gradient
- Cobble/boulder
- Riffle/run/pool
- ➤ More diverse

Southern Streams

- Low gradient
- Sand/gravel
- > Run/pool
- **≻**Lower diversity

Methods

Backpack Electrofishing

Barge Electrofishing

Healthy Fish Community

Impaired Fish Community

Southern IBI Development

- Used Maryland, Virginia, North Carolina, South Carolina, and Georgia Programs as models for developing NJ Inner Coastal Plain Fish IBI
- > All of these states have similar fish species to NJ
- Maryland has an established Coastal Plain Fish IBI and has completed recalibration
- Results present to MD DNR, EPA Regions 2 and 3, Versar Inc, and NJ Fish IBI Workgroup

Steps

- Researched historical fish distributions within Inner Coastal Plain
- Identified and sampled "least impacted" and "most impacted" sites within Inner Coastal Plain
- Researched applicability of Coastal Plain Fish IBI's from other states
- Used Maryland DNR Coastal Plain Fish IBI as a template for data analysis and metric development
- Tested Coastal Plain metrics, Northern NJ IBI metrics, and Karr's original fish metrics

New Jersey vs. Maryland

Analysis

- 111 sites were sampled for development including 21 least impaired and 24 most impaired sites
- Completed n-1 Jackknife validation
- Completed n-10 Bootstrapping validation
- > Evaluated minimum drainage size
- Completed evaluation of different scoring techniques
- Completed network design to include fixed, sentinel, and probabilistic sites

Southern IBI Metrics

Richness & Composition

- 1. Native Species Richness
- 2. Benthic Species Richness
- 3. Intolerant Species Richness
- 4. Proportional Abundance Tolerant Species

Trophic Composition

- 5. Proportional Abundance Insectivores
- 6. Proportional Abundance Piscivores

Fish Abundance & Condition

- 7. Abundance minus Tolerant Species
- 8. DELT Anomalies

Impact Classification

Condition	Least Impacted N=21	Most Impacted N=24
%Forest/Wetland	>50%	<35%
%Urban	<20%	>60%
	—	
%Impervious Cover	<5%	>19%
рН	>5.5	None
Instream Habitat	Optimal or Sub-optimal	None
Fish Abundance	>100	None
Fish Richness	>5	None

Results of Metric Testing

Mann-Whitney (M-W)
Kolmogorov-Smirnov (K-S)

	Reference n = 21 Impaired n = 24		Pearson Correlation n = 111	
Metric	M-W	K-S	Urban	Forest
Native Sp.	<i>P</i> < 0.001	<i>P</i> < 0.001	-0.29	0.39
Benthic Sp.	<i>P</i> < 0.001	<i>P</i> < 0.001	-0.48	0.35
Intolerant Sp.	P < 0.001	P < 0.001	-0.41	0.46
% Tolerants	P < 0.001	P = 0.001	0.47	-0.27
% Insectivores	P < 0.001	P < 0.001	-0.48	0.30
% Piscivores	P = 0.002	P = 0.001	-0.18	0.24
Abundance	P < 0.001	P = 0.001	-0.21	0.07

Benthic Species Richness

➤ Includes the following species:
Sea Lamprey, American Brook Lamprey,
Margined Madtom, Creek Chubsucker,
Tadpole Madtom, Swamp Darter,
Tessellated Darter, and Yellow Perch

% Abundance of Tolerant Species

Includes the following species: American Eel, Green Sunfish, Bluegill, Banded Killifish, White Sucker, and Mummichog

% Piscivorous Species

Includes the following species: White Perch, Redfin Pickerel, Chain Pickerel, Striped Bass, Black Crappie, Largemouth Bass, and Yellow Perch

% DELT Anomalies

➤ Based solely on BFBM data

Metric Scoring

- ➤ Metrics adjustments determined by Pearson correlations (p<0.05) and by exhibiting strong linear relationship with drainage area (R²>0.25)
- Metrics exhibiting a strong relationship with drainage area were adjusted using the following equation:

Native Species

Adjusted value = mean reference + observed - predicted (Tetra Tech, Inc.)

Where predicted value= $m * log_{10}$ (drainage area in mi^2) + b

Metric Scoring Criteria

Richness & Composition

Number of Native Species

 $11.05 + x - [Log_{10}(Drainage Area * 2.7828) + 8.6142]$

Number of Benthic Insectivores

 $2.29 + x - [Log_{10}(Drainage Area * 0.6293) + 1.7354]$

Number of Intolerant Species

 $1.38 + x - [Log_{10}(Drainage Area * 0.7737) + 0.7043]$

Metric	Coefficient of Variability	Discrimination Efficiency	Response	Scoring
Native Richness	16.6	87.5%	↑	100 * X /15
Benthic Richness	19.8	83.3%	\uparrow	100 * X /3
Intolerant Richness	44.3	91.7%	<u> </u>	100 * X /2
% Tolerants	24.4	70.8%	\	100 * (93.5 – X) /93.5
% Insectivores	35.0	83.3%	<u> </u>	100 * X /61.2
% Piscivores	126.9	70.8%	<u> </u>	100 * X /31.8
Abundance	39.4	75.0%	<u> </u>	100 * X /299
DELTs	32.3	46.2%	\downarrow	100 * (3.4 - X) /3.4

Rating Categories

Case Study

FIBI213 Ivanhoe Brook

- > 66% Forest/Wetland
- > 13% Urban
- > 3.5% Impervious Cover
- > 3.6 Miles² Drainage
- ➤ Habitat score = 134
- IBI score = 77 Good

Results

- 14 Native Species
- 4 Benthic Insectivores
- 2 Intolerant Species
- 20% Tolerant Species
- > 51% Insectivore Species
- 4% Top Predator Species
- > 132 Fish
- 0% External Deformities

Case Study

FIBI201 NB Pennsauken Creek

- 31% Forest/Wetland
- > 60% Urban
- 19% Impervious Cover
- > 4.0 Miles² Drainage
- ➤ Habitat score = 98
- ➢ IBI score = 36 Poor

Results

- > 8 Native Species
- 1 Benthic Insectivores
- 0 Intolerant Species
- > 56% Tolerant Species
- > 5% Insectivore Species
- 1.5% Top Predator Species
- > 88 Fish
- 0% External Deformities

Southern IBI Network

Regional sampling – 2012 N.IBI Northwest

> 26 S. IBI Fixed sites – every 5 years

> 15 S. IBI Probabilistic sites – 3 sites/year

≥ 2 S. IBI Sentinel sites – 1 site/year

Atlantic drainage streams will be evaluated during Atlantic CoastalPlain Monitoring

If S. IBI is applicable to Atlantic drainage streams, 9 additional fixed sites will be added in this region

